Introduction to Chemical Engineering

Problem Sheet Review on Mass and Energy Balances

Problem 1 (mass balance; not reactive)

Midterm exam 2020

In the four-stage evaporation system shown in Fig. 1, a 50% by weight sugar solution is concentrated to 65% (by weight) by evaporating water in each stage. An input stream of 50 000 kg/h is feed to the system.

- a. Perform degree-of-freedom analysis for each subsystem as well as for the overall system.
- b. Determine the flow and composition of all the streams. Please fill a similar table as given below and report your results in the table.

Assumptions:

- Stages I and II evaporate equal amount of water, i.e. W1=W2.
- Stages III and IV evaporate equal amount of water, i.e. W3=W4.
- Stage III evaporates 10% of the total water entering the system.

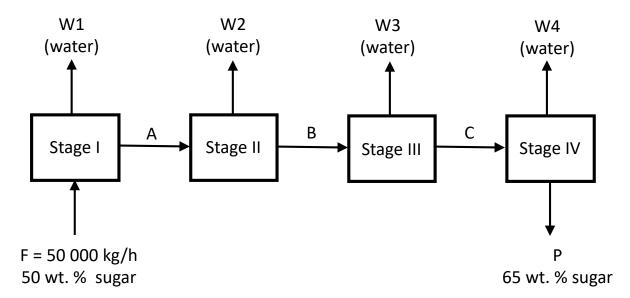
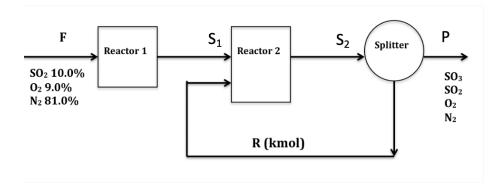


Fig. 1. Four-stage evaporation system.

	F	Р	W1	W2	W3	W4	Α	В	С
Flow (kg/h)									
Composition									
Sugar (%w/w)			0	0	0	0			
(%w/w)									
Composition			1	1	1	1			


water					
(%w/w)					

Problem 2 (Mass balances on reactive systems)

Final exam 2013

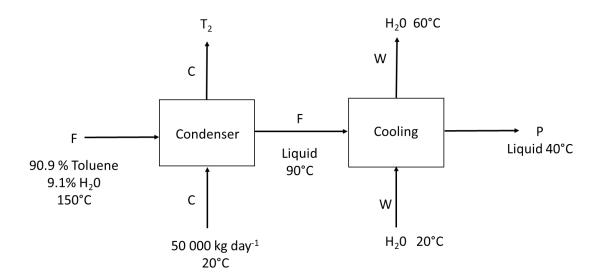
Sulfur dioxide (SO₂) that is a toxic gas can be converted to SO₃, which has many uses in industry. A gas stream having the composition shown in figure below is to be passed through a two-stage reactor. To increase the overall conversion to 95 %, some of the exit gas from stage 2 is recycled back to the inlet of stage 2 using a splitter. The conversion of the SO₂ to SO₃ (on one pass though) in the first stage is 75 % and in the second stage 65 %.

All the fractional compositions are in mol%

Knowing that N_2 is an inert, write and balance the reaction that takes place in the reactors.

- a) Taking F=100 kmol/h as basis, find the molar flow rate and the molar compositions of the streams S₁ and P.
- b) How much must be recycled per 100 kmol/h of inlet gas (stream F)? (What is the molar flow rate of R, for F=100 kmol/h)

Problem 3 (Energy balances on non-reactive systems)


Final exam 2019

Toluene (C₇H₈) is condensed and cooled in a process consisting of two units operating at 1atm, such as below. In the first unit, a specific compound (C) is used for condensing vapor mixture of Toluene. For every 100 kg of C charged into the system, 27.5 kg of a vapor mixture of toluene and water (9.1wt%) enter the condenser and are condensed by the C stream. In the second unit, water is used to reduce the temperature of liquid Toluene and water. Please note that the phase of C is solid, and it does not change in this process.

Calculate:

- a) The temperature of the C stream after it leaves the condenser.
- b) The mass flow rate (kg/h) of cooling water required.

Stream	Cp [kJ kg ⁻¹ °C ⁻¹]	T _b [°C]	$\Delta H_{\text{vap}}(T_b) [kJ kg^{-1}]$
$H_2O(1)$	4.2	100	2260
$H_2O(g)$	2.1	-	-
C_7H_8 (1)	1.7	111	230
$C_7H_8(g)$	1.3	-	-
C(s)	2.1	-	-

